Potent dual inhibitors of Plasmodium falciparum M1 and M17 aminopeptidases through optimization of S1 pocket interactions.
نویسندگان
چکیده
Malaria remains a global health problem, and though international efforts for treatment and eradication have made some headway, the emergence of drug-resistant parasites threatens this progress. Antimalarial therapeutics acting via novel mechanisms are urgently required. Plasmodium falciparum M1 and M17 are neutral aminopeptidases which are essential for parasite growth and development. Previous work in our group has identified inhibitors capable of dual inhibition of PfA-M1 and PfA-M17, and revealed further regions within the protease S1 pockets that could be exploited in the development of ligands with improved inhibitory activity. Herein, we report the structure-based design and synthesis of novel hydroxamic acid analogues that are capable of potent inhibition of both PfA-M1 and PfA-M17. Furthermore, the developed compounds potently inhibit Pf growth in culture, including the multi-drug resistant strain Dd2. The ongoing development of dual PfA-M1/PfA-M17 inhibitors continues to be an attractive strategy for the design of novel antimalarial therapeutics.
منابع مشابه
Screening the Medicines for Malaria Venture "Malaria Box" against the Plasmodium falciparum Aminopeptidases, M1, M17 and M18
Malaria is a parasitic disease that remains a global health burden. The ability of the parasite to rapidly develop resistance to therapeutics drives an urgent need for the delivery of new drugs. The Medicines for Malaria Venture have compounds known for their antimalarial activity, but not necessarily the molecular targets. In this study, we assess the ability of the "MMV 400" compounds to inhi...
متن کاملIdentification and Validation of a Potent Dual Inhibitor of the P. falciparum M1 and M17 Aminopeptidases Using Virtual Screening
The Plasmodium falciparum PfA-M1 and PfA-M17 metalloaminopeptidases are validated drug targets for the discovery of antimalarial agents. In order to identify dual inhibitors of both proteins, we developed a hierarchical virtual screening approach, followed by in vitro evaluation of the highest scoring hits. Starting from the ZINC database of purchasable compounds, sequential 3D-pharmacophore an...
متن کاملStructure of the Plasmodium falciparum M17 aminopeptidase and significance for the design of drugs targeting the neutral exopeptidases.
Current therapeutics and prophylactics for malaria are under severe challenge as a result of the rapid emergence of drug-resistant parasites. The human malaria parasite Plasmodium falciparum expresses two neutral aminopeptidases, PfA-M1 and PfA-M17, which function in regulating the intracellular pool of amino acids required for growth and development inside the red blood cell. These enzymes are...
متن کاملModeling of human M1 aminopeptidases for in silico screening of potential Plasmodium falciparum alanine aminopeptidase (PfA-M1) specific inhibitors
Plasmodium falciparum alanine M1-aminopeptidase (PfA-M1) is a validated target for anti-malarial drug development. Presence of significant similarity between PfA-M1 and human M1-aminopeptidases, particularly within regions of enzyme active site leads to problem of non-specificity and off-target binding for known aminopeptidase inhibitors. Molecular docking based in silico screening approach for...
متن کاملFingerprinting the Substrate Specificity of M1 and M17 Aminopeptidases of Human Malaria, Plasmodium falciparum
BACKGROUND Plasmodium falciparum, the causative agent of human malaria, expresses two aminopeptidases, PfM1AAP and PfM17LAP, critical to generating a free amino acid pool used by the intraerythrocytic stage of the parasite for proteins synthesis, growth and development. These exopeptidases are potential targets for the development of a new class of anti-malaria drugs. METHODOLOGY/PRINCIPAL FI...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of medicinal chemistry
دوره 110 شماره
صفحات -
تاریخ انتشار 2016